By Topic

Multiple stochastic learning automata for vehicle path control in an automated highway system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Unsal, C. ; Dept. of Complex Eng. Syst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Kachroo, P. ; Bay, J.S.

This paper suggests an intelligent controller for an automated vehicle planning its own trajectory based on sensor and communication data. The intelligent controller is designed using the learning stochastic automata theory. Using the data received from on-board sensors, two automata (one for lateral actions, one for longitudinal actions) can learn the best possible action to avoid collisions. The system has the advantage of being able to work in unmodeled stochastic environments, unlike adaptive control methods or expert systems. Simulations for simultaneous lateral and longitudinal control of a vehicle provide encouraging results

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:29 ,  Issue: 1 )