By Topic

Minimal representation multisensor fusion using differential evolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Joshi ; Real-Time Innovations, Sunnyvale, CA, USA ; A. C. Sanderson

Fusion of information from multiple sensors is required for planning and control of robotic systems in complex environments. The minimal representation approach is based on an information measure as a universal yardstick for fusion and provides a framework for integrating information from a variety of sources. In this paper, we describe the principles of minimal representation multisensor fusion and evaluate a differential evolution approach to the search for solutions. Experiments in robot manipulation using both tactile and visual sensing demonstrate that this algorithm is effective in finding useful and practical solutions to this problem for real systems. Comparison of this differential evolution algorithm with more traditional genetic algorithms shows distinct advantages in both accuracy and efficiency

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:29 ,  Issue: 1 )