By Topic

GPS: primary tool for time transfer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lewandowski, W. ; Bur. Int. des Poids et Mesures, Sevres, France ; Azoubib, Jacques ; Klepczynski, William J.

The Global Positioning System (GPS) is not only a navigation system, it is also a time-transfer system. As a time-transfer system it provides stability very close to one part in ten to the fourteenth over one day (1 ns/day). After a brief introduction to timekeeping terms, this paper reviews the role of GPS in time distribution and clock synchronization. The GPS coarse acquisition (C/A)-code single-frequency single-channel (one satellite) common-view (CV) time transfer is then discussed. Special consideration is given to progress in GPS C/A-code CV time and frequency transfer through the use of “all-in-view” multichannel receivers. This technique increases the number of daily observations by a factor of ten relative to conventional single-channel receivers and results in an improvement in time and frequency transfer stability by a factor of about three. Other important improvements discussed are the use of GPS carrier phase measurements and temperature-stabilized antennas. The latter reduce the daily and seasonal delay variations of GPS time-receiving equipment. The use of GLONASS as a complementary tool to GPS time transfer is also be reported. These improvements indicate that GPS, as a time-transfer system, should provide the capability to reach a stability of one part in ten to the sixteenth over one day (10 ps/day)

Published in:

Proceedings of the IEEE  (Volume:87 ,  Issue: 1 )