By Topic

Phase balancing using mixed-integer programming [distribution feeders]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jinxiang Zhu ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Mo-Yuen Chow ; Fan Zhang

Unbalanced feeder systems cause deteriorating power quality and increase investment and operating costs. Feeder reconfiguration and phase swapping are two popular methods to balance the systems. For an unbalanced feeder system, feeder reconfiguration is difficult to meet the phase balancing criterion due to the limited number of sectionalizing switches available. Phase swapping is another alternative and direct approach for phase balancing. Phase swapping has not received its deserved attention due to the complexity of feeder systems, the dimension of problems, and totally overlooking the impacts of phase imbalance. Phase swapping can economically and effectively balance the feeder systems to improve power quality and reduce power system total cost. Deregulation arises competition on power quality, service reliability and electricity price. Therefore phase swapping can enhance a utilities' competitive capability. This paper proposes a mixed-integer programming formulation for phase swapping optimization. Single-phase loads are treated differently to three-phase loads. Nodal phase swapping and lateral phase swapping are also introduced. An example is used to illustrate the proposed method

Published in:

Power Systems, IEEE Transactions on  (Volume:13 ,  Issue: 4 )