Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Comparison of sliding-mode and fuzzy neural network control for motor-toggle servomechanism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Chung Yuan Christian Univ., Chung Li, Taiwan ; Rong-Fong Fung ; Rong-Jong Wai

A comparative study of sliding-mode control and fuzzy neural network (FNN) control on the motor-toggle servomechanism is presented. The toggle mechanism is driven by a permanent-magnet synchronous servomotor. The rod and crank of the toggle mechanism are assumed to be rigid. First, Hamilton's principle and Lagrange multiplier method are applied to formulate the equation of motion. Then, based on the principles of the sliding-mode control, a robust controller is developed to control the position of a slider of the motor-toggle servomechanism. Furthermore, an FNN controller with adaptive learning rates is implemented to control the motor-toggle servomechanism for the comparison of control characteristics. Simulation and experimental results show that both the sliding-mode and FNN controllers provide high-performance dynamic characteristics and are robust with regard to parametric variations and external disturbances. Moreover, the FNN controller can result in small control effort without chattering

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:3 ,  Issue: 4 )