By Topic

Dynamic contact sensing by flexible beam

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ueno, N. ; Dept. of Mater. Eng., Kyushu Nat. Ind. Res. Inst., Saga, Japan ; Svinin, M.M. ; Kaneko, M.

This paper discusses a new dynamic sensing system capable of detecting the contact point between a flexible beam and an object. The proposed sensing system, named dynamic antenna, is simply composed of an insensitive flexible beam, a torque sensor, a joint position sensor, an actuator, and a payload at the tip end of the beam. The contact point can be detected through estimation of the oscillation frequencies of the beam in contact with the object. First, a dynamic model of the sensor is derived. Next, it is shown that information of the fundamental and the second natural frequencies is sufficient for unique determining of the contact point if the beam has uniform mass and stiffness distribution. In practical realization, the fundamental and the second natural frequencies of the beam in contact with the object are extracted from the torque sensor measurements with the use of the maximum entropy method. Then, the frequencies are mapped into the contact-point coordinate. Extraction of the frequencies and mapping them into the contact point constitute a sensing strategy which is tested under experiment

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:3 ,  Issue: 4 )