Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

ILP-based cost-optimal DSP synthesis with module selection and data format conversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ito, K. ; Dept. of Electr. & Electron. Systs., Saitama Univ., Urawa, Japan ; Lucke, L.E. ; Parhi, K.K.

In high-level synthesis, a data flow graph (DFG) description of an algorithm is mapped onto a register transfer level description of an architecture. Each node of the DFG is scheduled to a specific time and allocated to a processor. In this paper, we present new integer linear programming (ILP) models which generate a blocked schedule for a DFG with automatic retiming, pipelining, and unfolding while performing module selection and dataformat conversion. A blocked schedule is a schedule which overlaps multiple iterations of the DFG to guarantee a processor optimal schedule. During module selection an appropriate processor is chosen from a library of processors to construct a cost optimal architecture. Furthermore, we also include the cost and latency of data format conversions between processors of different implementation styles. We also present a new formulation for minimizing the unfolding factor of the blocked schedule. The approach presented in this paper is the only systematic approach proposed so far to include implicit unfolding and to perform synthesis using nonuniform processor styles and data format converters.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:6 ,  Issue: 4 )