Cart (Loading....) | Create Account
Close category search window

Dynamic behavior and locking of a semiconductor laser subjected to external injection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Annovazzi-Lodi, V. ; Dipt. di Elettronica, Pavia Univ., Italy ; Scire, A. ; Sorel, M. ; Donati, S.

In this paper, we analyze the phenomena arising when a monomode semiconductor laser is subjected to external injection from another laser. The system stability is investigated as a function of detuning and of the relative injected power. Different regimes, spanning from phase locking to chaos and coherence collapse, are described by analytical and numerical methods for weak and moderate injection. Previous theoretical studies are extended by describing the inverse transition from chaos to stability and by deriving the final locking condition. Also, further investigation on the coherence collapse regime has been performed. Besides contributing to the exploration of an interesting fundamental phenomenon, the results of this analysis are useful for different applications, including coherent detection and chaotic cryptography

Published in:

Quantum Electronics, IEEE Journal of  (Volume:34 ,  Issue: 12 )

Date of Publication:

Dec 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.