By Topic

A proposed 4 GHz, 60 kW transit-time oscillator operating at 18 kV beam voltage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. J. Barroso ; Assoc. Plasma Lab., Nat. Inst. for Space Res., Brazil ; K. G. Kostov ; I. G. Yovchev

A high-power transit-time oscillator operating at 4.0 GHz in the cylindrical-cavity TM010 mode is proposed. Without requiring an externally applied magnetic field, the oscillator comprises a diode electron gun and a cylindrical cavity that are combined into a single unit that makes for a compact, lightweight device. The transit-time effect, which underlies the operation principle of the oscillator, is examined through a small-signal analysis from which a relation embodying the cavity length, resonant frequency, and cathode voltage is derived. Proper DC voltages of 18 kV are applied to the diode gun which runs in the space-charge-limited regime and produces a 27 A-current hollow electron beam. Output power is extracted axially from the system by aperture coupling the cavity to an external waveguide where outgoing travelling waves with 60 kW peak power are observed by means of 2.5 D particle-in-cell computer simulations

Published in:

IEEE Transactions on Plasma Science  (Volume:26 ,  Issue: 5 )