By Topic

Modeling of impedance collapse in high-voltage diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Turchi, P.J. ; Air Force Res. Lab., Kirtland AFB, NM, USA ; Peterkin, R.E., Jr

Electron-beam diodes driven by fast-rising, high-voltage pulses often operate with cold cathodes for which the presence of a plasma adjacent to the cathode surface is essential to obtain adequate electron emission. A consequence of such surface plasma, however, is closure of the interelectrode gap by plasma motion. Resistive heating of the plasma competes with work performed in expanding the plasma and heat transfer to the cold-cathode boundary. The resulting closure speed is calculated, using an MHD code, and found to agree well with results of experiments using organic-cloth cathodes at 35 kV. Computed plasma speeds are typically 8-12 km/s, and are relatively insensitive to the applied voltage. Gap closure due to the plasma motion calculated numerically corresponds to estimates based on impedance collapse in the experiments

Published in:

Plasma Science, IEEE Transactions on  (Volume:26 ,  Issue: 5 )