By Topic

High-power, repetitive-stacked Blumlein pulsers commutated by a single switching element

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Davanloo, F. ; Center for Quantum Electron., Texas Univ., Dallas, TX, USA ; Collins, C. ; Agee, F.J.

The stacked Blumlein pulse generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commutated with a single switching element at the other end, In this may, relatively low charging voltages are multiplied to give a higher desired voltage across an arbitrary load. Extensive characterization of the stacked Blumlein pulsers indicates that these devices are capable of producing high-power pulses with rise times and repetition rates in the range of 0.3-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap, or photoconductive switch. This paper presents the progress in the development and use of these novel pulsers. Recent adaptation of the design has enabled the stacked Blumlein to produce 50-70 MW nanosecond pulses with risetimes on the order of 200-300 ps into nominally matched loads. The device has a compact line geometry and is commutated by a single photoconductive switch triggered by a low power laser diode

Published in:

Plasma Science, IEEE Transactions on  (Volume:26 ,  Issue: 5 )