Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Effects of plasma surface layers on the efficiency of plasma flow switching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

The plasma flow switch is a possible fast opening-switch for Z-pinches on inductive-store pulsed-power machines. This paper presents results of two-dimensional, radiation-magnetohydrodynamic models for a well-characterized plasma flow switch operating into a load region at current levels of 5-6 MA. The calculations predict that motion of the switch plasma along coaxial electrodes leads to the formation along the inner electrode of a boundary layer that can interfere with switching. The simulations describe the effect of the boundary layer on switching and show that it may be removed by means of a boundary-layer trap. Predictive calculations were used to eliminate the effects of the boundary layer and led to an improvement in the switch's performance. Comparison with experiments lends credence to the model

Published in:

Plasma Science, IEEE Transactions on  (Volume:26 ,  Issue: 5 )