By Topic

A stochastic model for heterogeneous computing and its application in data relocation scheme development

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Min Tan ; Segue Software Inc., Los Gatos, CA, USA ; Siegel, H.J.

In a dedicated, mixed-machine, heterogeneous computing (HC) system, an application program may be decomposed into subtasks, then each subtask assigned to the machine where it is best suited for execution. Data relocation is defined as selecting the sources for needed data items. It is assumed that multiple independent subtasks of an application program can be executed concurrently on different machines whenever possible. A theoretical stochastic model for HC Is proposed, in which the computation times of subtasks and communication times for intermachine data transfers can be random variables. The optimization problem for finding the optimal matching, scheduling, and data relocation schemes to minimize the total execution time of an application program is defined based on this stochastic HC model. The global optimization criterion and search space for the above optimization problem are described. It is validated that a greedy algorithm-based approach can establish a local optimization criterion for developing data relocation heuristics. The validation is provided by a theoretical proof based on a set of common assumptions about the underlying HC system and application program. The local optimization criterion established by the greedy approach, coupled with the search space defined for choosing valid data relocation schemes, can help developers of future practical data relocation heuristics

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:9 ,  Issue: 11 )