By Topic

Constant-time algorithms for constrained triangulations on reconfigurable meshes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
V. V. Bokka ; AT&T Bell Labs., USA ; H. Gurla ; S. Olariu ; J. L. Schwing

A number of applications in computer-aided manufacturing, CAD, and computer-aided geometric design ask for triangulating pieces of material with defects. These tasks are known collectively as constrained triangulations. Recently, a powerful architecture called the reconfigurable mesh has been proposed: In essence, a reconfigurable mesh consists of a mesh-connected architecture augmented by a dynamically reconfigurable bus system. The main contribution of this paper is to show that the flexibility of the reconfigurable mesh can be exploited for the purpose of obtaining constant-time algorithms for a number of constrained triangulation problems. These include triangulating a convex planar region containing any constant number of convex holes, triangulating a convex planar region in the presence of a collection of rectangular holes, and triangulating a set of ordered line segments. Specifically with a collection of O(n) such objects as input, our algorithms run in O(1) time on a reconfigurable mesh of size n×n. To the best of our knowledge, this is the first time constant time solutions to constrained triangulations are reported on this architecture

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:9 ,  Issue: 11 )