By Topic

Real-time American sign language recognition using desk and wearable computer based video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Starner, T. ; Media Lab., MIT, Cambridge, MA, USA ; Weaver, J. ; Pentland, A.

We present two real-time hidden Markov model-based systems for recognizing sentence-level continuous American sign language (ASL) using a single camera to track the user's unadorned hands. The first system observes the user from a desk mounted camera and achieves 92 percent word accuracy. The second system mounts the camera in a cap worn by the user and achieves 98 percent accuracy (97 percent with an unrestricted grammar). Both experiments use a 40-word lexicon

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:20 ,  Issue: 12 )