By Topic

An analysis of the kink phenomena in InAlAs/InGaAs HEMT's using two-dimensional device simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Suemitsu, T. ; NTT Syst. Electron. Labs., Kanagawa, Japan ; Enoki, T. ; Sano, N. ; Tomizawa, M.
more authors

Kink phenomena in InAlAs/InGaAs HEMTs are investigated using a two-dimensional (2-D) device simulation that takes into account impact ionization, including nonlocal field effects, and the surface states in a side-etched region at the gate periphery. The simulation model enables us to represent the kink, and it is found that the accumulation of holes generated by the impact ionization has the channel electron density in the side-etched region increase at the bias point where kink appears. When the electron density in the side-etched region is small, the hole accumulation causes a significant increase in that electron density, resulting in a large kink. The simulation results suggest a model in which the kink is described in terms of the modification of the parasitic source resistance induced by the hole accumulation. This model implies a way to eliminate the kink, that is, keeping the electron density in the side-etched region high

Published in:

Electron Devices, IEEE Transactions on  (Volume:45 ,  Issue: 12 )