By Topic

The graph topology on nth-order systems is quotient Euclidean

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Meyer, D.G. ; Courant Inst. of Math. Sci., New York, NY, USA

It is shown that on the set of m-input p-output minimal nth-order state-space systems the graph topology and the induced Euclidean quotient topology are identified. The author considers the set Lnp×m of m -input p-output nth-order minimal state-space systems. The author presents three lemmas and a corollary from which a theorem is proved stating that the graph topology and the quotient Euclidean topology are identical on a quotient space Ln p×m/~. Since the graph topology is constructed to be weak, and the quotient Euclidean topology is intuitively strong, this result is unexpected

Published in:

Automatic Control, IEEE Transactions on  (Volume:36 ,  Issue: 3 )