By Topic

4- and 13-GHz tuned amplifiers implemented in a 0.1-μm CMOS technology on SOI, SOS, and bulk substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yo-Chuol Ho ; Dept. of Electr. & Comput. Eng., Florida Univ., Gainesville, FL, USA ; Ki-Hong Kim ; B. A. Floyd ; C. Wann
more authors

Four- and 13-GHz tuned amplifiers have been implemented in a partially scaled 0.1-1 μm CMOS technology on bulk, silicon-on-insulator (SOI), and silicon-on-sapphire (SOS) substrates. The 4-GHz bulk, SOI, and SOS amplifiers exhibit forward gains of 14, 11, and 12.5 dB and Fmin's of 4.5 (bulk) and 3.5 db (SOS). The 13-GHz SOS and SOI amplifiers exhibit gains of 15 and 5.3 dB and Funn's of 4.9 and 7.8 dB. The 4-GHz bulk amplifier has the highest resonant frequency among reported bulk CMOS amplifiers, while the 13-GHz SOS and SOI amplifiers are the first in a CMOS technology to have tuned frequencies greater than 10 GHz. These and other measurement results suggest that it may be possible to implement 20-GHz tuned amplifiers in a fully scaled 0.1-1 μm CMOS process

Published in:

IEEE Journal of Solid-State Circuits  (Volume:33 ,  Issue: 12 )