By Topic

A delta-sigma PLL for 14-b, 50 kSample/s frequency-to-digital conversion of a 10 MHz FM signal

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Galton, I. ; Dept. of Electr. & Comput. Eng., California Univ., San Diego, La Jolla, CA, USA ; Huff, W. ; Carbone, P. ; Siragusa, E.

In many wireless applications, it is necessary to demodulate and digitize frequency or phase modulated signals. Most commonly, this is done using separate frequency discrimination and analog-to-digital (A/D) conversion. In low-cost IC technologies, such as CMOS, precise analog frequented discrimination is not practical, so the A/D conversion is usually performed in quadrature or at a nonzero intermediate frequency (IF) with digital frequency discrimination. While practical, the approach tends to require complicated A/D converters, and accuracy is usually limited by the duality of the A/D conversion. This paper presents an alternative structure, referred to as a delta-sigma frequency-to-digital converter (ΔΣFDC), that simultaneously performs frequency demodulation and digitization. The ΔΣFDC is shown to offer high-precision performance with very low analog complexity. A prototype of the key component of the ΔΣFDC has been fabricated in a 0.6 μm, single-poly, CMOS process. The prototype achieved 50 kSample/s frequency-to-digital conversion of a 10 MHz frequency-modulated signal with a worst case signal-to-noise-and-distortion ratio of 85 dB and a worst case spurious-free dynamic range of 88 dH

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:33 ,  Issue: 12 )