By Topic

On the robustness of population-based versus point-based optimization in the presence of noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nissen, V. ; IDS Prof. Scheer GmbH, Saarbrucken, Germany ; Propach, J.

Practical optimization problems often require the evaluation of solutions through experimentation, stochastic simulation, sampling, or even interaction with the user. Thus, most practical problems involve noise. We address the robustness of population-based versus point-based optimization on a range of parameter optimization problems when noise is added to the deterministic objective function values. Population-based optimization is realized by a genetic algorithm and an evolution strategy. Point-based optimization is implemented as the classical Hooke-Jeeves pattern search strategy and threshold accepting as a modern local search technique. We investigate the performance of these optimization methods for varying levels of additive normally distributed fitness-independent noise and different sample sizes for evaluating individual solutions. Our results strongly favour population-based optimization, and the evolution strategy in particular

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:2 ,  Issue: 3 )