By Topic

A neuro-fuzzy controller for mobile robot navigation and multirobot convoying

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. C. Ng ; Dept. of Electr. & Comput. Eng., California Univ., San Diego, La Jolla, CA, USA ; M. M. Trivedi

A Neural integrated Fuzzy conTroller (NiF-T) which integrates the fuzzy logic representation of human knowledge with the learning capability of neural networks is developed for nonlinear dynamic control problems. NiF-T architecture comprises of three distinct parts: (1) Fuzzy logic Membership Functions (FMF), (2) a Rule Neural Network (RNN), and (3) an Output-Refinement Neural Network (ORNN). FMF are utilized to fuzzify sensory inputs. RNN interpolates the fuzzy rule set; after defuzzification, the output is used to train ORNN. The weights of the ORNN can be adjusted on-line to fine-tune the controller. In this paper, real-time implementations of autonomous mobile robot navigation and multirobot convoying behavior utilizing the NiF-T are presented. Only five rules were used to train the wall following behavior, while nine were used for the hall centering. Also, a robot convoying behavior was realized with only nine rules. For all of the described behaviors-wall following, hall centering, and convoying, their RNN's are trained only for a few hundred iterations and so are their ORNN's trained for only less than one hundred iterations to learn their parent rule sets

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:28 ,  Issue: 6 )