By Topic

Genetic algorithms for generation of class boundaries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pal, S.K. ; Machine Intelligence Unit, Indian Stat. Inst., Calcutta, India ; Bandyopadhyay, S. ; Murthy, C.A.

A method is described for finding decision boundaries, approximated by piecewise linear segments, for classifying patterns in ℜN,N⩾2, using an elitist model of genetic algorithms. It involves generation and placement of a set of hyperplanes (represented by strings) in the feature space that yields minimum misclassification. A scheme for the automatic deletion of redundant hyperplanes is also developed in case the algorithm starts with an initial conservative estimate of the number of hyperplanes required for modeling the decision boundary. The effectiveness of the classification methodology, along with the generalization ability of the decision boundary, is demonstrated for different parameter values on both artificial data and real life data sets having nonlinear/overlapping class boundaries. Results are compared extensively with those of the Bayes classifier, k-NN rule and multilayer perceptron

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:28 ,  Issue: 6 )