By Topic

A fuzzy neural network controller for parallel-resonant ultrasonic motor drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Chung Yuan Christian Univ., Chung Li, Taiwan ; Rong-Jong Wai ; Sheng-Long Wang

A newly designed driving circuit for the traveling-wave-type ultrasonic motor (USM), which consists of a push-pull DC-DC power converter and a current-source two-phase parallel-resonant inverter, is presented in this study. Moreover, since the dynamic characteristics of the USM are difficult to obtain and the motor parameters are time varying, a fuzzy neural network (NN) controller is proposed to control the USM drive system. In the proposed controller, a fuzzy model-following controller is implemented to control the rotor position of the USM, and an online trained NN with variable learning rates is implemented to tune the output scaling factor of the fuzzy controller. To guarantee the convergence of tracking error, analytical methods based on a discrete-type Lyapunov function are proposed to determine the desired variable learning rates. From the experimental results, accurate tracking response can be obtained by the proposed controller, and the influences of parameter variations and external disturbances on the USM drive also can be reduced effectively

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:45 ,  Issue: 6 )