By Topic

Optimal time-frequency deconvolution filter design for nonstationary signal transmission through a fading channel: AF filter bank approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen, Bor-Sen ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Yue-Chiech Chung ; Der-Fen Huang

The purpose of this paper is to develop a new approach-time-frequency deconvolution filter-to optimally reconstruct the nonstationary (or time-varying) signals that are transmitted through a multipath fading and noisy channel. A deconvolution filter based on an ambiguity function (AF) filter bank is proposed to solve this problem via a three-stage filter bank. First, the signal is transformed via an AF analysis filter bank so that the nonstationary (or time-varying) component is removed from each subband of the signal. Then, a Wiener filter bank is developed to remove the effect of channel fading and noise to obtain the optimal estimation of the ambiguity function of the transmitted signal in the time-frequency domain. Finally, the estimated ambiguity function of the transmitted signal in each subband is sent through an AF synthesis filter bank to reconstruct the transmitted signal. In this study, the channel noise may be time-varying or nonstationary. Therefore, the optimal separation problem of multicomponent nonstationary signals is also solved by neglecting the transmission channel

Published in:

Signal Processing, IEEE Transactions on  (Volume:46 ,  Issue: 12 )