By Topic

Discrete-time neural net controller with guaranteed performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jagannathan, S. ; Autom. & Robotics Res. Inst., Texas Univ., Arlington, TX, USA ; Lewis, F.L.

A two-layer discrete-time neural net (NN) controller is presented for the control of an mnth order multi-input and multi-output (MIMO) dynamical system, so that linearity in the parameters holds, but the 'net reconstruction error' is considered to be nonzero. The NN controller exhibits learning-while-functioning-features instead of learning-then-control so that control is immediate with no explicit learning phase is needed. The structure of the NN controller is derived using a filtered error notion. It is indicated that delta rule-based weight tuning, when employed for closed-loop control, can yield unbounded NN weights if: (1) the net cannot exactly reconstruct a certain required function, or (2) there are bounded unknown disturbances acting on the dynamical system. A novel improved weight tuning algorithm is proposed to overcome the above problems.

Published in:

American Control Conference, 1994  (Volume:3 )

Date of Conference:

29 June-1 July 1994