By Topic

MEMS inertial rate and acceleration sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. Hulsing ; Allied-Signal Inc., Redmond, WA, USA

Development of the μSCIRAS/sup TM/ (pronounced micro-Cyrus) multisensor for a period of over six years has produced a practical MEMS Inertial Measurement Unit (IMU). Using only three silicon sensors, a full-up IMU suitable for tactical grade navigation and guidance applications has been achieved. Iterative improvements in silicon sensor design and bulk micromachining processes have matured to the point where an IMU with an attractive price/performance ratio is now producible. This paper summarizes the design features and test results for an IMU with <100 deg/hr performance. Test results are shown for rate bias and acceleration bias over temperature. Production of this initial member of the μSCIRAS product family begins this year to support applications including guided artillery shells, technology insertion to decrease missile costs, navigation of remotely-piloted vehicles, dismounted soldier location devices and other navigation aids. The small size of this silicon multisensor and its ability to measure both angular rotation rate and linear acceleration provides a useful advantage in product packaging, cost, size, and system testing. The μSCIRAS Inertial Sensor Assembly (ISA) is housed in a 2 cubic inch package weighing less than 5 ounces (140 grams) requires less than 0.8 Watts of power. Continuing development will lead to greatly improved performance on the order of 1 deg/hr at low prices in high-volume production.

Published in:

IEEE Aerospace and Electronic Systems Magazine  (Volume:13 ,  Issue: 11 )