Cart (Loading....) | Create Account
Close category search window
 

Future NASA spaceborne SAR missions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hilland, J.E. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Stuhr, F.V. ; Freeman, A. ; Imel, D.
more authors

Two Earth-orbiting radar missions are planned for the near future by NASA-Shuttle Radar Topography Mission (SRTM) and LightSAR. The SRTM will fly aboard the Shuttle using interferometric synthetic aperture radar (IFSAR) to provide a global digital elevation map. SRTM is jointly sponsored by NASA and the National Imagery and Mapping Agency (NIMA). The LightSAR will utilize emerging technology to reduce mass and life-cycle costs for a mission to acquire SAR data for Earth science and civilian applications and to establish commercial utility. LightSAR is sponsored by NASA and industry partners. The use of IFSAR to measure elevation is one of the most powerful and practical applications of radar. A properly equipped spaceborne IFSAR system can produce a highly accurate global digital elevation map, including cloud-covered areas, in significantly less time and at significantly lower cost than other systems. For accurate topography over a large area, the interferometric measurements can be performed simultaneously in physically separate receive systems. Since LightSAR offers important benefits to both the science community and US industry, an innovative government-industry teaming approach is being explored, with industry sharing the cost of developing LightSAR in return for commercial rights to its data and operational responsibility. LightSAR will enable mapping of surface change. The instrument's high-resolution mapping, along with its quad polarization, dual polarization, interferometric and ScanSAR modes will enable continuous monitoring of natural hazards, Earth's surface deformation, surface vegetation change, and ocean mesoscale features to provide commercially viable and scientifically valuable data products. Advanced microelectronics and lightweight materials will increase LightSAR's functionality without increasing the mass. Dual frequency L/X-band designs have been examined

Published in:

Aerospace and Electronic Systems Magazine, IEEE  (Volume:13 ,  Issue: 11 )

Date of Publication:

Nov 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.