By Topic

Are multilayer perceptrons adequate for pattern recognition and verification?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Gori ; Dipt. d'Ingegneria dell'Inf., Siena Univ., Italy ; F. Scarselli

Discusses the ability of multilayer perceptrons (MLPs) to model the probability distribution of data in typical pattern recognition and verification problems. It is proven that multilayer perceptrons with sigmoidal units and a number of hidden units less or equal than the number of inputs are unable to model patterns distributed in typical clusters, since these networks draw open separation surfaces in the pattern space. When using more hidden units than inputs, the separation surfaces can be closed but, unfortunately it is proven that determining whether or not a MLP draws closed separation surfaces in the pattern space is NP-hard. The major conclusion of the paper is somewhat opposite to what is believed and reported in many application papers: MLPs are definitely not adequate for applications of pattern recognition requiring a reliable rejection and, especially, they are not adequate for pattern verification tasks

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:20 ,  Issue: 11 )