Cart (Loading....) | Create Account
Close category search window

Macro-star networks: efficient low-degree alternatives to star graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chi-Hsiang Yeh ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; Varvarigos, E.A.

We propose a new class of interconnection networks, called macro-star networks, which belong to the class of Cayley graphs and use the star graph as a basic building module. A macro-star network can have node degree that is considerably smaller than that of a star graph of the same size, and diameter that is sublogarithmic and asymptotically within a factor of 1.25 from a universal lower bound (given its node degree). We show that algorithms developed for star graphs can be emulated on suitably constructed macro-stars with asymptotically optimal slowdown. This enables us to obtain through emulation a variety of efficient algorithms for the macro-star network, thus proving its versatility. Basic communication tasks, such as the multimode broadcast and the total exchange, can be executed in macro-star networks in asymptotically optimal time under both the single-port and the all-port communication models. Moreover, no interconnection network with similar node degree can perform these communication tasks in time that is better by more than a constant factor than that required in a macro-star network. We show that macro-star networks can embed trees, meshes, hypercubes, as well as star, bubble-sort, and complete transposition graphs with constant dilation. We introduce several variants of the macro-star network that provide more flexibility in scaling up the number of nodes. We also discuss implementation issues and compare the new topology with the star graph and other popular topologies

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:9 ,  Issue: 10 )

Date of Publication:

Oct 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.