By Topic

Theoretical analysis for communication-induced checkpointing protocols with rollback-dependency trackability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jichiang Tsai ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Sy-Yen Kuo ; Yi-Min Wang

Rollback-Dependency Trackability (RDT) is a property that states that all rollback dependencies between local checkpoints are on-line trackable by using a transitive dependency vector. In this paper, we address three fundamental issues in the design of communication-induced checkpointing protocols that ensure RDT. First, we prove that the following intuition commonly assumed in the literature is in fact false: If a protocol forces a checkpoint only at a stronger condition, then it must take, at most, as many forced checkpoints as a protocol based on a weaker condition. This result implies that the common approach of sharpening the checkpoint-inducing condition by piggybacking more control information on each message may not always yield a more efficient protocol. Next, we prove that there is no optimal on-line RDT protocol that takes fewer forced checkpoints than any other RDT protocol for all possible communication patterns. Finally, since comparing checkpoint-inducing conditions is not sufficient for comparing protocol performance, we present some formal techniques for comparing the performance of several existing RDT protocols

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:9 ,  Issue: 10 )