Cart (Loading....) | Create Account
Close category search window
 

Intensity distortion induced by cross-phase modulation and chromatic dispersion in optical-fiber transmissions with dispersion compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bellotti, G. ; Dipt. di Ingegneria dell''Inf., Padova Univ., Italy ; Varani, M. ; Francia, C. ; Bononi, A.

In dispersion compensated systems, the intensity distortion induced by the interplay between cross-phase modulation and fiber chromatic dispersion can be a primary cause of transmission degradation. This interplay is mostly studied by time-consuming computer simulations. This letter introduces a new model of this interplay in fiber transmissions with dispersion compensation, leading to a linear filter that, applied to the input intensity of a modulated interfering channel, gives the intensity distortion of a continuous-wave probe signal at the receiver. The model can be of significant value in the search for optimized dispersion maps.

Published in:

Photonics Technology Letters, IEEE  (Volume:10 ,  Issue: 12 )

Date of Publication:

Dec. 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.