By Topic

Blind beamforming on a randomly distributed sensor array system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yao, K. ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Hudson, R.E. ; Reed, C.W. ; Daching Chen
more authors

We consider a digital signal processing sensor array system, based on randomly distributed sensor nodes, for surveillance and source localization applications. In most array processing the sensor array geometry is fixed and known and the steering array vector/manifold information is used in beamformation. In this system, array calibration may be impractical due to unknown placement and orientation of the sensors with unknown frequency/spatial responses. This paper proposes a blind beamforming technique, using only the measured sensor data, to form either a sample data or a sample correlation matrix. The maximum power collection criterion is used to obtain array weights from the dominant eigenvector associated with the largest eigenvalue of a matrix eigenvalue problem. Theoretical justification of this approach uses a generalization of Szego's (1958) theory of the asymptotic distribution of eigenvalues of the Toeplitz form. An efficient blind beamforming time delay estimate of the dominant source is proposed. Source localization based on a least squares (LS) method for time delay estimation is also given. Results based on analysis, simulation, and measured acoustical sensor data show the effectiveness of this beamforming technique for signal enhancement and space-time filtering

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:16 ,  Issue: 8 )