Cart (Loading....) | Create Account
Close category search window
 

A blind adaptive decorrelating detector for CDMA systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ulukus, Sennur ; Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA ; Yates, R.D.

The decorrelating detector is known to eliminate multiaccess interference when the signature sequences of the users are linearly independent, at the cost of enhancing the Gaussian receiver noise. We present a blind adaptive decorrelating detector which is based on the observation of readily available statistics. The algorithm recursively updates the filter coefficients of a desired user by using the output of the current filter. Due to the randomness of the information bits transmitted and the ambient Gaussian channel noise, the filter coefficients evolve stochastically. We prove the convergence of the filter coefficients to a decorrelating detector in the mean squared error (MSE) sense. We develop lower and upper bounds on the MSE of the receiver filter from the convergence point and show that with a fixed step size sequence, the MSE can be made arbitrarily small by choosing a small enough step size. With a time-varying step size sequence, the MSE converges to zero implying an exact convergence. The proposed algorithm is distributed, in the sense that no information about the interfering users such as their signature sequences or power levels is needed. The algorithm requires the knowledge of only two parameters for the construction of the receiver filter of a desired user: the desired user's signature sequence and the variance of the additive white Gaussian (AWG) receiver noise. This detector, for an asynchronous code division multiple access (CDMA) channel, converges to the one-shot decorrelating detector

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:16 ,  Issue: 8 )

Date of Publication:

Oct 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.