Scheduled System Maintenance:
On April 27th, single article purchases and IEEE account management will be unavailable from 2:00 PM - 4:00 PM ET (18:00 - 20:00 UTC).
We apologize for the inconvenience.
By Topic

Aging effects on shear fatigue life and shear strength of soldered thick film joints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Li, G.Y. ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, Hong Kong ; Chan, Y.C.

The effects of tin diffusion, silver and palladium dispersion, and intermetallic compound growth on the shear fatigue of solder joints between thick film mixed bonded conductor Pd-Ag and solder 62Sn-36Pb-2Ag are investigated. Microstructural analysis reveals that the intermetallic compounds (IMC's) Pd3Sn2, Pd3 Sn, Pd2Sn, Pd3Sn2, PdSn, PdSn2, PdSn4, Ag5Sn, Ag3Sn, PbPd3, and Pb3Pd5 are formed after aging. X-ray dot maps demonstrate that the longer the aging time, the more serious the silver and palladium dispersion into the solder and the tin diffusion into the conductor. It is observed that the tin diffuses to the interface of the substrate/conductor after 120 h aging. Shear strength tests with different strain rate show that the adhesion strength decreases with prolongation of aging time. Shear cycling tests indicate that the fatigue lifetime of the solder joints depends on the diffusion depth of the silver and palladium, especially the tin diffusion into the thick film conductor. The above results mean that the more serious is the tin and silver interdiffusion, and the more IMC's are formed in the solder joint (effects which are the result of prolonged storage at high temperature or of long term operation in real SMT assemblies), the more sensitive is the solder joint to stress. Eventually fatigue failure of the joint may result. It is argued that volume change and increased brittleness caused by the intermetallic formation, and volume swelling of the conductor layer due to tin diffusion, are major factors in the decrease of fatigue lifetime and degradation of the shear strength of the solder joints

Published in:

Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on  (Volume:21 ,  Issue: 4 )