Scheduled System Maintenance:
On April 27th, single article purchases and IEEE account management will be unavailable from 2:00 PM - 4:00 PM ET (18:00 - 20:00 UTC).
We apologize for the inconvenience.
By Topic

A comparison of similarity measures for use in 2-D-3-D medical image registration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Penney, G.P. ; Div. of Radiol. Sci., Guys & St. Thomas Hosp., London, UK ; Weese, J. ; Little, J.A. ; Desmedt, P.
more authors

A comparison of six similarity measures for use in intensity-based two-dimensional-three-dimensional (2-D-3-D) image registration is presented. The accuracy of the similarity measures are compared to a "gold-standard" registration which has been accurately calculated using fiducial markers. The similarity measures are used to register a computed tomography (CT) scan of a spine phantom to a fluoroscopy image of the phantom. The registration is carried out within a region-of-interest in the fluoroscopy image which is user defined to contain a single vertebra. Many of the problems involved in this type of registration are caused by features which were not modeled by a phantom image alone. More realistic "gold-standard" data sets were simulated using the phantom image with clinical image features overlaid. Results show that the introduction of soft-tissue structures and interventional instruments into the phantom image can have a large effect on the performance of some similarity measures previously applied to 2-D-3-D image registration. Two measures were able to register accurately and robustly even when soft-tissue structures and interventional instruments were present as differences between the images. These measures were pattern intensity and gradient difference. Their registration accuracy, for all the rigid-body parameters except for the source to film translation, was within a root-mean-square (rms) error of 0.53 mm or degrees to the "gold-standard" values. No failures occurred while registering using these measures.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:17 ,  Issue: 4 )