Cart (Loading....) | Create Account
Close category search window
 

Characterization of visually similar diffuse diseases from B-scan liver images using nonseparable wavelet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mojsilovic, A. ; Bell Labs., Lucent Technol., Murray Hill, NJ, USA ; Popovic, M. ; Markovic, S. ; Krstic, M.

This paper describes a new approach for texture characterization, based on nonseparable wavelet decomposition, and its application for the discrimination of visually similar diffuse diseases of liver. The proposed feature-extraction algorithm applies nonseparable quincunx wavelet transform and uses energies of the transformed regions to characterize textures. Classification experiments on a set of three different tissue types show that the scale/frequency approach, particularly one based on the nonseparable wavelet transform, could be a reliable method for a texture characterization and analysis of B-scan liver images. Comparison between the quincunx and the traditional wavelet decomposition suggests that the quincunx transform is more appropriate for characterization of noisy data, and practical applications, requiring description with lower rotational sensitivity.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:17 ,  Issue: 4 )

Date of Publication:

Aug. 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.