Cart (Loading....) | Create Account
Close category search window

Automated seeded lesion segmentation on digital mammograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kupinski, M.A. ; Dept. of Radiol., Chicago Univ., IL, USA ; Giger, M.L.

Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. The authors have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). The authors tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in the authors' database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:17 ,  Issue: 4 )

Date of Publication:

Aug. 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.