By Topic

Inverse error-diffusion using classified vector quantization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lai, J.Z.C. ; Dept. of Inf. Eng., Feng Chia Univ., Taichung, Taiwan ; Yen, J.Y.

This correspondence extends and modifies classified vector quantization (CVQ) to solve the problem of inverse halftoning. The proposed process consists of two phases: the encoding phase and decoding phase. The encoding procedure needs a codebook for the encoder which transforms a halftoned image to a set of codeword-indices. The decoding process also requires a different codebook for the decoder which reconstructs a gray-scale image from a set of codeword-indices. Using CVQ, the reconstructed gray-scale image is stored in compressed form and no further compression may be required. This is different from the existing algorithms, which reconstructed a halftoned image in an uncompressed form. The bit rate of encoding a reconstructed image is about 0.51 b/pixel

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 12 )