By Topic

Hybrid image segmentation using watersheds and fast region merging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
K. Haris ; Lab. of Med. Inf., Aristotelian Univ. of Thessaloniki, Greece ; S. N. Efstratiadis ; N. Maglaveras ; A. K. Katsaggelos

A hybrid multidimensional image segmentation algorithm is proposed, which combines edge and region-based techniques through the morphological algorithm of watersheds. An edge-preserving statistical noise reduction approach is used as a preprocessing stage in order to compute an accurate estimate of the image gradient. Then, an initial partitioning of the image into primitive regions is produced by applying the watershed transform on the image gradient magnitude. This initial segmentation is the input to a computationally efficient hierarchical (bottom-up) region merging process that produces the final segmentation. The latter process uses the region adjacency graph (RAG) representation of the image regions. At each step, the most similar pair of regions is determined (minimum cost RAG edge), the regions are merged and the RAG is updated. Traditionally, the above is implemented by storing all RAG edges in a priority queue. We propose a significantly faster algorithm, which additionally maintains the so-called nearest neighbor graph, due to which the priority queue size and processing time are drastically reduced. The final segmentation provides, due to the RAG, one-pixel wide, closed, and accurately localized contours/surfaces. Experimental results obtained with two-dimensional/three-dimensional (2-D/3-D) magnetic resonance images are presented

Published in:

IEEE Transactions on Image Processing  (Volume:7 ,  Issue: 12 )