By Topic

A router architecture for real-time communication in multicomputer networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rexford, J. ; Network & Distributed Syst., AT&T Bell Labs., Florham Park, NJ, USA ; Hall, J. ; Shin, K.G.

Parallel machines have the potential to satisfy the large computational demands of real-time applications. These applications require a predictable communication network, where time-constrained traffic requires bounds on throughput and latency, while good average performance suffices for best-effort packets. This paper presents a new router architecture that tailors low-level routing, switching, arbitration, flow-control, and deadlock-avoidance policies to the conflicting demands of each traffic class. The router implements bandwidth regulation and deadline-based scheduling, with packet switching and table-driven multicast routing, to bound end-to-end delay and buffer requirements for time-constrained traffic while allowing best-effort traffic to capitalize on the low-latency routing and switching schemes common in modern parallel machines. To limit the cost of servicing time-constrained traffic, the router includes a novel packet scheduler that shares link-scheduling logic across the multiple output ports, while masking the effects of dock rollover on the representation of packet eligibility times and deadlines. Using the Verilog hardware description language and the Epoch silicon compiler, we demonstrate that the router design meets the performance goals of both traffic classes in a single-chip solution. Verilog simulation experiments on a detailed timing model of the chip show how the implementation and performance properties of the packet scheduler scale over a range of architectural parameters

Published in:

Computers, IEEE Transactions on  (Volume:47 ,  Issue: 10 )