By Topic

An object-oriented model of measurement systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qingping Yang ; Centre for Manuf. Metrol., Brunel Univ., Uxbridge, UK ; Butler, C.

This paper presents a general object-oriented model for measurement systems. The limitations of the conventional function-oriented models are examined in the light of the generalized concept of measurement and its theoretical framework proposed previously by the authors. The proposed model identifies five classes of objects, i.e., measured object, measuring instrument, reference standard, human observer, and operating environment. Each is characterized by its own attributes and operations or functions at three levels, i.e., internal, operational, and environmental. The interactions between them are also modeled, including the coupling between the measured object and the measuring instrument, the human-instrument interface, the calibration, and the interference. It serves as both a modeling framework and a practical tool for description, analysis and design, and, in particular, for computer-aided analysis and design of a measuring system. It will find applications in instrumentation engineering and measurement research and education

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:47 ,  Issue: 1 )