By Topic

Performance analysis of cellular CDMA networks over frequency-selective fading channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mar, J. ; Dept. of Electr. Eng., Inst. of Technol., Taoyuan, Taiwan ; Hung-Yi Chen

An effect of multipath fading on the performance of a cellular code-division multiple-access (CDMA) system is analyzed in this paper. A wide-sense stationary uncorrelated scattering (WSSUS) channel model and the coherent binary phase-shift keying (BPSK) with asynchronous direct-sequence (DS) spreading signal are assumed in the analysis. The average error probability for both the forward link and reverse link of a cellular CDMA system over a frequency-selective fading channel using a conventional correlation-type receiver and RAKE receiver are derived. The impact of imperfect power control and channel capacity of a cellular CDMA system is also investigated. The closed forms of average error probability derived in the paper can save a lot of computation time to analyze the performance and channel capacity of a cellular CDMA system. The analytical results show that the performance and maximum transmission rate of cellular CDMA systems degrade with an increase in the number of simultaneous users and the number of interfering cells. The signal-to-interface ratio (SIR) for the reverse link derived in this paper can directly describe the interrelationships among a number of paths, number of users, number of interfering cells, fading factors, and maximum variation of a received unfaded signal

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:47 ,  Issue: 4 )