By Topic

Robust tracking enhancement of robot systems including motor dynamics: a fuzzy-based dynamic game approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen, Bor-Sen ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Huey-Jian Uang ; Chung-Shi Tseng

A robust tracking control design of robot systems including motor dynamics with parameter perturbation and external disturbance is proposed in this study via adaptive fuzzy cancellation technique. A minimax controller equipped with a fuzzy-based scheme is used to enhance the tracking performance in spite of system uncertainties and external disturbance. The design procedure is divided into three steps. At first, a linear nominal robotic control design is obtained via model reference tracking with desired eigenvalue assignment. Next, a fuzzy logic system is constructed and then tuned to eliminate the nonlinear uncertainties as possibly as it can to enhance the tracking robustness. Finally, a minimax control scheme is specified to optimally attenuate the worst-case effect of both the residue due to fuzzy cancellation and external disturbance to achieve a minimax tracking performance. In addition, an adaptive fuzzy-based dynamic game theory is introduced to solve the minimax tracking problem. The proposed method is appropriate for the robust tracking design of robotic systems with large parameter perturbation and external disturbance. A simulation example of a two-link robotic manipulator driven by DC motors is also given to demonstrate the effectiveness of proposed design method's tracking performance

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:6 ,  Issue: 4 )