Cart (Loading....) | Create Account
Close category search window

Tracking textured deformable objects using a finite-element mesh

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Malassiotis, S. ; Dept. of Electr. Eng., Thessaloniki Univ., Greece ; Strintzis, M.G.

This paper presents an algorithm for the estimation of the motion of textured objects undergoing nonrigid deformations over a sequence of images. An active mesh model, which is a finite-element deformable membrane, is introduced in order to achieve efficient representation of global and local deformations. The mesh is constructed using an adaptive triangulation procedure that places more triangles over high detail areas. Through robust least squares techniques and modal analysis, efficient estimation of global object deformations is achieved, based on a set of sparse displacement measurements. A local warping procedure is then applied to minimize the intensity matching error between subsequent images, and thus estimate local deformations. Among the major contributions of this paper are novel techniques developed to acquire knowledge of the object dynamics and structure directly from the image sequence, even in the absence of prior intelligence regarding the scene. Specifically, a coarse-to-fine estimation scheme is first developed, which adapts the model to locally deforming features. Subsequently, principal components modal analysis is used to accumulate knowledge of the object dynamics. This knowledge is finally exploited to constrain the object deformation. The problem of tracking the model over time is addressed, and a novel motion-compensated prediction approach is proposed to facilitate this. A novel method for the determination of the dynamical principal axes of deformation is developed. The experimental results demonstrate the efficiency and robustness of the proposed scheme, which has many potential applications in the areas of image coding, image analysis, and computer graphics

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:8 ,  Issue: 6 )

Date of Publication:

Oct 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.