Cart (Loading....) | Create Account
Close category search window
 

A gradual neural-network algorithm for jointly time-slot/code assignment problems in packet radio networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Funabikiy, N. ; Dept. of Inf. & Comput. Sci., Osaka Univ., Japan ; Kitamichi, J.

A gradual neural network (GNN) algorithm is presented for the jointly time-slot/code assignment problem (JTCAP) in a packet radio network in this paper. The goal of this newly defined problem is to find a simultaneous assignment of a time-slot and a code to each communication link, whereas time-slots and codes have been independently assigned in existing algorithms. A time/code division multiple access protocol is adopted for conflict-free communications, where packets are transmitted in repetition of fixed-length time-slots with specific codes. GNN seeks the time-slot/code assignment with the minimum number of time-slots subject to two constraints: (1) the number of codes must not exceed its upper limit and (2) any couple of links within conflict distance must not be assigned to the same time-slot/code pair. The restricted problem for only one code is known to be NP-complete. The performance of GNN is verified through solving 3000 instances with 100-500 nodes and 100-1000 links. The comparison with the lower bound and a greedy algorithm shows the superiority of GNN in terms of the solution quality with the comparable computation time

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 6 )

Date of Publication:

Nov 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.