Cart (Loading....) | Create Account
Close category search window
 

Modular recurrent neural networks for Mandarin syllable recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sin-Horng Chen ; Dept. of Commun. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Yuan-Fu Liao

A new modular recurrent neural network (MRNN)-based speech-recognition method that can recognize the entire vocabulary of 1280 highly confusable Mandarin syllables is proposed in this paper. The basic idea is to first split the complicated task, in both feature and temporal domains, into several much simpler subtasks involving subsyllable and tone discrimination, and then to use two weighting RNN's to generate several dynamic weighting functions to integrate the subsolutions into a complete solution. The novelty of the proposed method lies mainly in the use of appropriate a priori linguistic knowledge of simple initial-final structures of Mandarin syllables in the architecture design of the MRNN. The resulting MRNN is therefore effective and efficient in discriminating among highly confusable Mandarin syllables. Thus both the time-alignment and scaling problems of the ANN-based approach for large-vocabulary speech-recognition can be addressed. Experimental results show that the proposed method and its extensions, the reverse-time MRNN (Rev-MRNN) and bidirection MRNN (Bi-MRNN), all outperform an advanced HMM method trained with the MCE/GPD algorithm in both recognition-rate and system complexity

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 6 )

Date of Publication:

Nov 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.