By Topic

Convergence analysis of a discrete-time recurrent neural network to perform quadratic real optimization with bound constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Perez-Ilzarbe, M.J. ; Dept. de Autom. y Comput., Univ. Publica de Navarra, Spain

Presents a model of a discrete-time recurrent neural network designed to perform quadratic real optimization with bound constraints. The network iteratively improves the estimate of the solution, always maintaining it inside of the feasible region. Several neuron updating rules which assure global convergence of the net to the desired minimum have been obtained. Some of them also assure exponential convergence and maximize a lower bound for the convergence degree. Simulation results are presented to show the net performance

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 6 )