By Topic

Searching for optimal frame patterns in an integrated TDMA communication system using mean field annealing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gangsheng Wang ; Multimedia Commun. Dept., Sharp Lab. of America Inc., Camas, WA, USA ; N. Ansari

In an integrated time-division multiple access (TDMA) communication system, voice and data are multiplexed in time to share a common transmission link in a frame format in which time is divided into slots. A certain number of time slots in a frame are allocated to voice and the rest are used to transmit data. Maximum data throughput can be achieved by searching for the optimal configuration(s) of relative positions of voice and data transmissions in a frame (frame pattern). When the problem size becomes large, the computational complexity in searching for the optimal patterns becomes intractable. In the paper, mean field annealing (MFA), which provides near-optimal solutions with reasonable complexity, is proposed to solve this problem. The determination of the related parameters are addressed. Comparison with the random search and simulated annealing algorithm is made in terms of solution optimality and computational complexity. Simulation results show that the MFA approach exhibits a good tradeoff between performance and computational complexity

Published in:

IEEE Transactions on Neural Networks  (Volume:9 ,  Issue: 6 )