Cart (Loading....) | Create Account
Close category search window
 

Comparing neural networks: a benchmark on growing neural gas, growing cell structures, and fuzzy ARTMAP

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heinke, D. ; Sch. of Psychol., Birmingham Univ., UK ; Hamker, F.H.

Compares the performance of some incremental neural networks with the well-known multilayer perceptron (MLP) on real-world data. The incremental networks are fuzzy ARTMAP (FAM), growing neural gas (GNG) and growing cell structures (GCS). The real-world datasets consist of four different datasets posing different challenges to the networks in terms of complexity of decision boundaries, overlapping between classes, and size of the datasets. The performance of the networks on the datasets is reported with respect to measure classification error, number of training epochs, and sensitivity toward variation of parameters. Statistical evaluations are applied to examine the significance of the results. The overall performance ranks in the following descending order: GNG, GCS, MLP, FAM

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 6 )

Date of Publication:

Nov 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.