By Topic

A class of competitive learning models which avoids neuron underutilization problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Clifford Sze-Tsan Choy ; Dept. of Electron. & Inf. Eng., Hong Kong Polytech., Hung Hom, Hong Kong ; Wan-Chi Siu,

We study a qualitative property of a class of competitive learning (CL) models, which is called the multiplicatively biased competitive learning (MBCL) model, namely that it avoids neuron underutilization with probability one as time goes to infinity. In the MBCL, the competition among neurons is biased by a multiplicative term, while only one weight vector is updated per learning step. This is of practical interest since its instances have computational complexities among the lowest in existing CL models. In addition, in applications like classification, vector quantizer design and probability density function estimation, a necessary condition for optimal performance is to avoid neuron underutilization. Hence, it is possible to define instances of MBCL to achieve optimal performance in these applications

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 6 )